
CygLidar Raspberry Pi Guide (EN)

Update: 22-10-24

How to connect CygLidar to RaspberryPi (based on Uart2 (ttyAMA1) on RaspberryPi 4B)

Enable GPIO (CMD)

Installation command: sudo apt install raspi-gpio

Confirm installation and Raspberry Pi pin map: gpio readall

Serial activation settings (CMD or Raspberry pi configuration)

1. Setting using CMD

A. Enter the sudo raspi-config

B. Interface option Select or enter the

C. Serial port Select or enter the

D. serial console no check

E. Serial port yes check

F. CMD – enter the sudo reboot

2. Setting using Raspberry Pi Configuration

A. Raspbian icon – Preferences – Raspberry Pi Configuration

B. Interfaces – Serial port on

C. Logout - Reboot

Check and set Uart

1. Uart port Check(CMD)

A. Enter the dtoverlay –a | grep uart

Only Uart2 ~ 5 can be used among all Uart (Uart 1 is for hardware only, Uart 2 is a mini

Uart connected with bluetooth, so it cannot be used)

2. Uart port activation settings

A. Enter the sudo vi /boot/config.txt

Put the editor name you want in the vi part ex) nano etc.

B. Write the code below the last [all] line by checking the available Uart ports as shown in the

picture

Uart0 = Debug console is connected by default. (It is set as hardware Uart, so use is

prohibited)

Uart1 = ttyAMA0/ttyS0 = Bluetooth connection by default. (It is set as mini Uart, so use is

prohibited)

Uart2 = ttyAMA1 (Available)

Uart3 = ttyAMA2 (Available)

Uart4 = ttyAMA3 (Available)

Uart5 = ttyAMA4 (Available)

C. Enter the ls /dev/ttyA* to see which UART is active

Check and set Uart Port speed

1. Uart Port speed Check

A. CMD – enter the stty –a < /dev/ttyAMA* (Enter the the port number you use for *)

B. After checking the speed enter the stty speed 3000000 < /dev/ttyAMA*

C. Enter the stty –a < /dev/ttyAMA* and check the changed speed

Test code 1(for example)

import time

import serial

RUN_2D = [0x5A, 0x77, 0xFF, 0x02, 0x00, 0x01, 0x00, 0x03]

RUN_3D = [0x5A, 0x77, 0xFF, 0x02, 0x00, 0x08, 0x00, 0x0A]

RUN_DUAL = [0x5A, 0x77, 0xFF, 0x02, 0x00, 0x07, 0x00, 0x05]

COMMAND_STOP = [0x5A, 0x77, 0xFF, 0x02,0x00,0x02,0x00,0x00]

HEADER1, HEADER2, HEADER3, LENGTH_LSB, LENGTH_MSB, PAYLOAD_HEADER, PAYLOAD_DATA,

CHECKSUM = 0, 1, 2, 3, 4, 5, 6, 7

POS_CYGBOT_HEADER, POS_DEVICE, POS_ID, POS_LENGTH_1, POS_LENGTH_2,

POS_PAYLOAD_HEADER = 0, 1, 2, 3, 4, 5

PAYLOAD_POS_HEADER, PAYLOAD_POS_DATA = 0, 1

NORMAL_MODE = 0x5A

PRODUCT_CODE = 0x77

DEFAULT_ID = 0xFF

HEADER_LENGTH_SIZE = 5

buffercounter, CPC, lengthLSB, lengthMSB, data_length = 0, 0, 0, 0, 0

step = HEADER1

receivedData = []

def Parser(data):

 global step, CPC, lengthLSB, lengthMSB, data_length, buffercounter, receivedData

 if step != CHECKSUM: # CPC is a variable for storing checksum. If it is not a

checksum part, XOR operation is performed on each data and then stored.

 CPC = CPC ^ data

 if step == HEADER1 and data == NORMAL_MODE:

 step = HEADER2

 elif step == HEADER2 and data == PRODUCT_CODE:

 step = HEADER3

 elif step == HEADER3 and data == DEFAULT_ID:

 step = LENGTH_LSB

 CPC = 0

 elif step == LENGTH_LSB:

 step = LENGTH_MSB

 lengthLSB = data

 elif step == LENGTH_MSB:

 step = PAYLOAD_HEADER

 lengthMSB = data

 data_length = ((lengthMSB << 8) & 0xff00) | (lengthLSB & 0x00ff)

 elif step == PAYLOAD_HEADER:

 step = PAYLOAD_DATA

 if data_length == 1:

 step = CHECKSUM

 buffercounter = 0

 receivedData = []

 elif step == PAYLOAD_DATA:

 receivedData.append(data)

 buffercounter = buffercounter+1

 if buffercounter >= data_length - 1:

 step = CHECKSUM

 elif step == CHECKSUM:

 step = HEADER1

 if CPC == data:

 return True

 else:

 step = HEADER1

 return False

ser = serial.Serial(# Port settings

 port= '/dev/ttyAMA1',

 baudrate=3000000,

 parity=serial.PARITY_NONE,

 stopbits=serial.STOPBITS_ONE,

 bytesize=serial.EIGHTBITS

)

ser.write(RUN_2D) # Mode settings

print("send : ", RUN_2D)

time.sleep(1)

while True:

 try:

 readdata = ser.readline()

 for i in range(len(readdata)):

 if Parser(readdata[i]):

 print(len(receivedData))

 except KeyboardInterrupt:

 ser.write(COMMAND_STOP)

 ser.close()

Test code 2(for example, OpenCV 3D data visualize)

import serial

import cv2

import numpy as np

RUN_3D = [0x5A, 0x77, 0xFF, 0x02, 0x00, 0x08, 0x00, 0x0A]

COMMAND_STOP = [0x5A, 0x77, 0xFF, 0x02, 0x00, 0x02, 0x00, 0x00]

HEADER1, HEADER2, HEADER3, LENGTH_LSB, LENGTH_MSB, PAYLOAD_HEADER, PAYLOAD_DATA,

CHECKSUM = 0, 1, 2, 3, 4, 5, 6, 7

NORMAL_MODE = 0x5A

PRODUCT_CODE = 0x77

DEFAULT_ID = 0xFF

normalizeDistanceLimit = 4080

dataLength3D = 14400

def ReceivedCompleteData(receivedData):

 global dataLength3D

 print(f'receive complete data : {len(receivedData)}')

 if len(receivedData) == dataLength3D:

 Visualize(receivedData)

def Visualize(receivedData):

 distanceData = Get3DDistanceDataFromReceivedData(receivedData)

 image = DistanceDataToNormalizedNumpyArray(distanceData)

 image = np.array(image, dtype=np.uint8)

 image = image.reshape(60, 160)

 image = cv2.resize(image, dsize=(480, 180), interpolation=cv2.INTER_NEAREST)

 cv2.imshow('test', image)

 cv2.waitKey(1)

def Get3DDistanceDataFromReceivedData(receivedData):

 global dataLength3D,normalizeDistanceLimit

 index = 0

 distanceData = [0 for i in range(int(dataLength3D / 3 * 2))]

 for i in range(0, dataLength3D-2, 3):

 pixelFirst = receivedData[i] << 4 | receivedData[i+1] >> 4

 pixelSecond = (receivedData[i+1] & 0xf) << 8 | receivedData[i+2]

 if pixelFirst > normalizeDistanceLimit:

 pixelFirst = normalizeDistanceLimit

 if pixelSecond > normalizeDistanceLimit:

 pixelSecond = normalizeDistanceLimit

 distanceData[index] = pixelFirst

 index += 1

 distanceData[index] = pixelSecond

 index += 1

 return distanceData

def DistanceDataToNormalizedNumpyArray(distanceData):

 global normalizeDistanceLimit

 result = np.array(distanceData)

 result = result / normalizeDistanceLimit * 255

 return result

#baud = 57600

#baud = 115200

baud = 250000

#baud = 3000000 # recommend baudrate under 3,000,000

ser = serial.Serial(# port open

 #port="/dev/ttyUSB0", # <- USB connection

 '/dev/ttyAMA1',# <- GPIO connection

 # "COM14", #<- Windows PC

 baudrate=baud,

 parity=serial.PARITY_NONE,

 stopbits=serial.STOPBITS_ONE,

 bytesize=serial.EIGHTBITS

)

if __name__ == "__main__":

 ser.write(RUN_3D)

 print("send : ", RUN_3D)

 step = HEADER1

 CPC = 0

 bufferCounter = 0

 receivedData = [0 for i in range(dataLength3D)]

 while True:

 try:

 for byte in ser.readline():

 parserPassed = False

 # Parse Start

 if step != CHECKSUM:

 CPC = CPC ^ byte

 if step == PAYLOAD_DATA:

 receivedData[bufferCounter] = byte

 bufferCounter += 1

 if bufferCounter >= dataLength :

 step = CHECKSUM

 elif step == HEADER1 and byte == NORMAL_MODE:

 step = HEADER2

 elif step == HEADER2 and byte == PRODUCT_CODE:

 step = HEADER3

 elif step == HEADER3 and byte == DEFAULT_ID:

 step = LENGTH_LSB

 CPC = 0

 elif step == LENGTH_LSB:

 step = LENGTH_MSB

 lengthLSB = byte

 elif step == LENGTH_MSB:

 step = PAYLOAD_HEADER

 lengthMSB = byte

 dataLength = (lengthMSB << 8) | lengthLSB - 1

 elif step == PAYLOAD_HEADER:

 step = PAYLOAD_DATA

 if dataLength == 0:

 step = CHECKSUM

 bufferCounter = 0

 receivedData = [0 for i in range(dataLength)] # clear

 elif step == CHECKSUM:

 step = HEADER1

 if CPC == byte:

 parserPassed = True

 else:

 step = HEADER1

 parserPassed = False

 # Parse End

 if parserPassed:

 ReceivedCompleteData(receivedData)

 except KeyboardInterrupt:

 ser.write(COMMAND_STOP)

 ser.close()

Result - Test code 1

1. RUN_2D Mode

2. RUN_3D Mode

3. RUN_Dual Mode

Result - Test code 2

