CygLidar Raspberry Pi Guide (EN)

Update:

22-10-24

How to connect Cyglidar to RaspberryPi (based on Uart2 (ttyAMA1) on RaspberryPi 4B)

“. Raspberry Pi
Pinout ‘

BCM S TXD2 - RXD

BCM 6

BCM 13 (pwm1)
BCM 19 (miso)
BCM 26

BCM 12 (pwmo)

BCM 16
BCM 20 (mosn

3v3 Power .= Sv Power
BCM 2 (spA) D @& Sv Power
BCM 3 (scu) »
BCM 4 (Grciko) D@ BCM 14 (xp)
Ground e @ BCM 15 (rxD)
BCM 17 L BCM 18 (pwmo)
BCM 27 . .
BCM 22 ®@ BCM 23
3v3 Power A BCM 24 -
BCM 10 (mos) ® °
BCM 9 (miso) o= BCM 25 , g ’ ;. -
BCM 11 (scik) LI BCM 8 (ceo)
Ground ° (= BCM 7 (ce1 JJ
BCM O (ip_sp) 8| BCM 1 (p_sc) 1XD
. .
. L]
. L]
L] L]
. L]
. -

Ground BCM 21 (scik

Enable GPIO (CMD)

Installation command: sudo apt install raspi-gpio

Confirm installation and Raspberry Pi pin map: gpio readall

Serial activation settings (CMD or Raspberry pi configuration)

1. Setting using CMD
A. Enter the sudo raspi-config

B. Interface option Select or enter the

Raspberry Pi Software Cenfiguration Tool (raspi-config)

1 System Options Configure system settings
2 Display Options Configure display settings

Interface Optio l e connect phe
4 Performance Options Configure performance settings
5 Localisation Options Configure language and regional settings
6 Advanced Options Configure advanced settings
8 Update Update this tool to the latest version
9 About raspi-config Information about this configuration tool

<Select> <Finish>

C. Serial port Select or enter the

Raspberry P1i Software Configuration Tool (raspi-config)

I1 Legacy Camera Enable/disable legacy camera support

12 SSH Enable/disable remote command line access using SSH
I3 VNC Enable/disable graphical remote access using RealVNC
14 SPI Enable/disable automatic loading of SPI kernel module

I2C

Enable/disable

me 0
I7 1-Wire Enable/disable one-wire interface
I8 Remote GPIO Enable/disable remote access to GPIO pins

<Select> <Back>

D. serial console no check

Would you like a login shell to be accessible over
serial?

E. Serial port yes check

Would you like the serial port hardware to be enabled?

F. CMD - enter the sudo reboot

2. Setting using Raspberry Pi Configuration

A. Raspbian icon — Preferences — Raspberry Pi Configuration

pRaN | |

' S L = »

Q Programming > | ,'
P Y — N -
T Intermet

l{:l‘ Sound & Video > -
‘? Graphics >
8_ Accessories >

:_; Help b4
-, -

[

vice Settings

Asvichis Y
AUTIO UeVI

;? Main Menu Editor

.......

Recommended Software

B. Interfaces - Serial port on

C. Logout - Reboot
Check and set Uart

1. Uart port Check(CMD)

A. Enter the dtoverlay —a | grep uart

cygbot@raspberrypl:

Only Uart2 ~ 5 can be used among all Uart (Uart 1 is for hardware only, Uart 2 is a mini

Uart connected with bluetooth, so it cannot be used)

2. Uart port activation settings
A. Enter the sudo vi /boot/config.txt

Put the editor name you want in the vi part ex) nano etc.

cygbot@raspberrypi:

B. Write the code below the last [all] line by checking the available Uart ports as shown in the

picture

12C SDA
12C SCL
TXD3 (ttyAMAZ2)
GND 9

- 11

Uart0 = Debug console is connected by default. (It is set as hardware Uart, so use is

prohibited)

Uart1l = ttyAMAO/ttySO = Bluetooth connection by default. (It is set as mini Uart, so use is
prohibited)

Uart2 = ttyAMA1 (Available)
Uart3 = ttyAMAZ2 (Available)
Uart4 = ttyAMA3 (Available)

Uart5 = ttyAMA4 (Available)

C. Enter the Is /dev/ttyA* to see which UART is active

fdev/ttyAMAB /dev/ttyAMAl /dev t tyAMAZ Sdev/ttyAMA3 /dev/ttyAMA4
cygbot@raspberrypi

cygbhot@raspberrypi ls /dev/ttyA"

Check and set Uart Port speed
1. Uart Port speed Check

A. CMD - enter the stty —a < /dev/ttyAMA* (Enter the the port number you use for *)

cygbot@raspberrypi

C. Enter the stty —a < /dev/ttyAMA* and check the changed speed

Test code 1(for example)

import time
import serial

RUN_2D = [Ox5A, ©x77, OXFF, Ox02, 0x00, 0x01, 0x00, 0x03]
RUN_3D = [Ox5A, ©x77, OXFF, Ox02, 0x00, 0x08, 0x00, Ox0A]
RUN_DUAL = [@x5A, ©x77, OxFF, 0x02, 0x00, 0x07, 0x00, 0x05]
COMMAND_STOP = [@x5A, ©x77, OxFF, 0x02,0x00,0x02,0x00,0x00]

HEADER1, HEADER2, HEADER3, LENGTH_LSB, LENGTH_MSB, PAYLOAD HEADER, PAYLOAD DATA,
CHECKSUM = @, 1, 2, 3, 4, 5, 6, 7

POS_CYGBOT_HEADER, POS_DEVICE, POS_ID, POS_LENGTH_1, POS_LENGTH_ 2,

POS_PAYLOAD HEADER = 0, 1, 2, 3, 4, 5

PAYLOAD_POS_HEADER, PAYLOAD_POS DATA = 0, 1

NORMAL_MODE = @x5A

PRODUCT_CODE = Ox77

DEFAULT_ID = OxFF

HEADER_LENGTH_SIZE = 5

buffercounter, CPC, lengthLSB, lengthMSB, data length = 0, o, 0, 0, @
step = HEADER1
receivedData = []

def Parser(data):
global step, CPC, lengthLSB, lengthMSB, data_length, buffercounter, receivedData
if step != CHECKSUM: # CPC is a variable for storing checksum. If it is not a
checksum part, XOR operation is performed on each data and then stored.
CPC = CPC ~ data

if step == HEADER1 and data == NORMAL_MODE:
step = HEADER2

elif step == HEADER2 and data == PRODUCT_CODE:
step = HEADER3

elif step == HEADER3 and data == DEFAULT_ID:
step = LENGTH_LSB
CPC =0

elif step == LENGTH_LSB:
step = LENGTH_MSB
lengthlLSB = data

elif step == LENGTH_MSB:
step = PAYLOAD_HEADER

lengthMSB = data
data_length = ((lengthMSB << 8) & 0xffee) | (lengthLSB & 0x00ff)

elif step == PAYLOAD_ HEADER:
step = PAYLOAD_DATA
if data_length == 1:
step = CHECKSUM
buffercounter = 0
receivedData = []

elif step == PAYLOAD DATA:
receivedData.append(data)
buffercounter = buffercounter+l
if buffercounter >= data_length - 1:
step = CHECKSUM

elif step == CHECKSUM:
step = HEADER1

if CPC == data:
return True
else:
step = HEADER1
return False

ser = serial.Serial(# Port settings
port= '/dev/ttyAMAl',
baudrate=3000000,
parity=serial.PARITY_NONE,
stopbits=serial.STOPBITS_ ONE,
bytesize=serial.EIGHTBITS

ser.write(RUN_2D) # Mode settings
print("send : ", RUN_2D)
time.sleep(1)

while True:
try:
readdata = ser.readline()
for i in range(len(readdata)):
if Parser(readdata[i]):
print(len(receivedData))

except KeyboardInterrupt:
ser.write(COMMAND_STOP)
ser.close()

Test code 2(for example, OpenCV 3D data visualize)
import serial

import cv2

import numpy as np

RUN_3D = [ox5A, 0x77, OxFF, 0x02, 0x00, 0x08, 0x00, Ox0A]
COMMAND_STOP [Ox5A, Ox77, OXFF, ©x02, 0x00, 0x02, 0x00, 0x00]

HEADER1, HEADER2, HEADER3, LENGTH_LSB, LENGTH_MSB, PAYLOAD HEADER, PAYLOAD DATA,
CHECKSUM = @, 1, 2, 3, 4, 5, 6, 7

NORMAL_MODE = Ox5A

PRODUCT_CODE = Ox77

DEFAULT ID = OxFF

normalizeDistancelLimit = 4080
datalLength3D = 14400

def ReceivedCompleteData(receivedData):
global datalLength3D
print(f'receive complete data : {len(receivedData)}')
if len(receivedData) == datalength3D:
Visualize(receivedData)

def Visualize(receivedData):
distanceData = Get3DDistanceDataFromReceivedData(receivedData)
image = DistanceDataToNormalizedNumpyArray(distanceData)
image = np.array(image, dtype=np.uint8)
image = image.reshape(60, 160)
image = cv2.resize(image, dsize=(480, 180), interpolation=cv2.INTER_NEAREST)
cv2.imshow('test', image)
cv2.waitKey(1)

def Get3DDistanceDataFromReceivedData(receivedData):
global datalength3D,normalizeDistancelLimit
index = ©
distanceData = [0 for i in range(int(datalLength3D / 3 * 2))]
for i in range(@, datalLength3D-2, 3):
pixelFirst = receivedData[i] << 4 | receivedData[i+1] >> 4
pixelSecond = (receivedData[i+1] & Oxf) << 8 | receivedData[i+2]

if pixelFirst > normalizeDistancelimit:
pixelFirst = normalizeDistancelimit

if pixelSecond > normalizeDistancelimit:
pixelSecond = normalizeDistancelimit

distanceData[index] = pixelFirst

index += 1
distanceData[index] = pixelSecond
index += 1

return distanceData

def DistanceDataToNormalizedNumpyArray(distanceData):
global normalizeDistancelLimit
result = np.array(distanceData)
result = result / normalizeDistancelLimit * 255
return result

#baud = 57600

#baud = 115200

baud = 250000

#baud = 3000000 # recommend baudrate under 3,000,000

ser = serial.Serial(# port open
#port="/dev/ttyUSBO", # <- USB connection
'/dev/ttyAMALl' ,# <- GPIO connection
"COM14", #<- Windows PC
baudrate=baud,
parity=serial.PARITY_NONE,
stopbits=serial.STOPBITS_ONE,
bytesize=serial .EIGHTBITS

)

if _name__ == "_main__":
ser.write(RUN_3D)
print("send : ", RUN_3D)
step = HEADER1
CPC = 0

bufferCounter = ©
receivedData = [@ for i in range(datalLength3D)]
while True:
try:
for byte in ser.readline():
parserPassed = False
Parse Start
if step != CHECKSUM:
CPC = CPC ™ byte
if step == PAYLOAD_DATA:
receivedData[bufferCounter] = byte
bufferCounter += 1
if bufferCounter >= datalength :
step = CHECKSUM
elif step == HEADER1 and byte == NORMAL_MODE:
step = HEADER2
elif step == HEADER2 and byte == PRODUCT_CODE:
step = HEADER3

elif step == HEADER3 and byte == DEFAULT_ID:

step = LENGTH_LSB

CPC = ©
elif step == LENGTH_LSB:

step = LENGTH_MSB

lengthLSB = byte
elif step == LENGTH_MSB:

step = PAYLOAD_HEADER

lengthMSB = byte

datalLength = (lengthMSB << 8) | lengthLSB - 1
elif step == PAYLOAD HEADER:

step = PAYLOAD_DATA

if datalLength == 0:

step = CHECKSUM

bufferCounter = 0

receivedData = [@ for i in range(datalLength)] # clear
elif step == CHECKSUM:

step = HEADER1

if CPC == byte:

parserPassed = True

else:

step = HEADER1

parserPassed = False
Parse End

if parserPassed:
ReceivedCompleteData(receivedData)
except KeyboardInterrupt:
ser.write(COMMAND STOP)
ser.close()

Result - Test code 1

1. RUN_2D Mode

Shell %

Python 3.9.2 (/usr/bin/python3)
>>> %Run 220922 Uart parsing test final.py

send : [99, 119, 255, 2, 0, 1, 0, 3]
322
322
322
322

2. RUN_3D Mode

Python 3.9.2 (/usr/bin/python3)
»>>> %Run 220922 Uart parsing test final.py

send : [90, 119, 255, 2, O, 8, 0, 18]
14400
14400
28800
14400
14400

Python 3.9.2 (/usr/bin/python3)
>>>

3. RUN_Dual Mode

Python 3.9.2 (/usr/bin/python3)
»»> %Run 220922 Uart parsing test final.py

send : [90, 119, 255, 2, @, 7, 0, 5]
322

14400

322

14400

322

Python 3.9.2 (/usr/bin/python3)
>>>

Result - Test code 2

send : [90, 119, 255, 2, 0, 8, 8, 10]
received complete data : 14400
received complete data : 144808
received complete data : 144808
received complete data : 144808
received complete data : 144808

test

