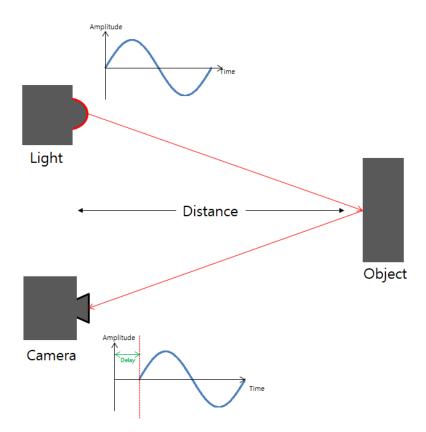
Ver 0.3.1

2D/3D Dual CygLiDAR CygLiDAR D2 User Manual


Table of Contents

1	Introduction	3	\$
-	ToF (Time of Flight)	3	;
-	Solid State	3	;
-	2D / 3D Dual	3	;
2	Specification	4	ł
3	Component	5	;
4	Hardware Design	5	,
5	How to Use	6	;
6	Serial Communication	7	,
-	<u>UART</u>	7	,
-	PINMAP		,
-	Packet Structure	7	,
-	<u>Checksum</u>	7	,
-	Packet	8	;
7	Verification & Install	1	5
8	CygLiDAR Viewer	1	6
9	CygLiDAR ROS Driver	2	22
10	Revision history	2	23

1. Introduction

ToF (Time of Flight)

CygLiDAR measures distance by light round trip time (ToF). ToF emits a pulse signal at the light emitter and measures the phase change of the signal reflected by the object. The phase shift method can measure time and calculate the distance of object.

Solid State

Solid State CygLiDAR has no vibration, heat or noise that is directly linked to the life of the device.

Unlike the 360 ° Scanning LiDAR, which uses a motor, a wide viewing angle is secured with a wide-angle lens, so the light emitting part (laser, LED) does not have to operate for a long time. This can reduce the heat generated by the light emitting part.

Solid State does not use a motor, so it can set smaller in size. CygLiDAR that use this method are highly compatible.

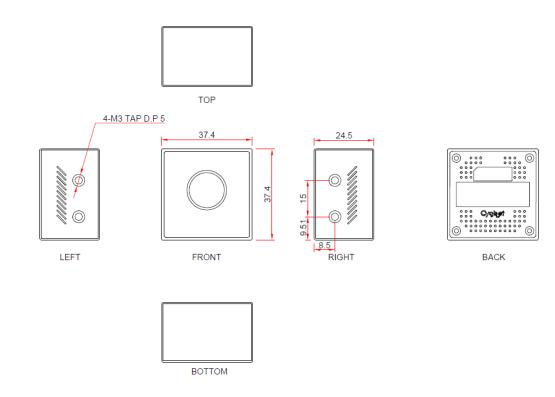
2D / 3D Dual

CygLiDAR can measure 2D and 3D distance data at the same time. A delicate external environment is possible with 3D data, enabling long-distance measurements with 2D data. CygLiDAR allows for flexible system configurations.

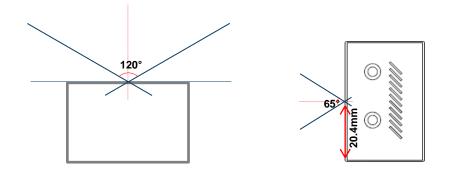
2. Specification

Detection range	Range affected by reflectivity 2D : 200mm ~ 7,000mm 3D : 50mm ~ 2,000mm (*DRM)
Distance accuracy	±1%
Resolution (Measure in mm)	2D : 0.75° (Angle) 3D : 160 x 60 (Pixel)
FOV : Field of View	2D/3D Horizontal : 120° 3D Vertical : 65°
Wavelength	*Laser Diode : NIR 940nm LED : NIR 940nm
Measuring speed	2D : 15Hz 3D : 15Hz
Size (W * H * D)	37.4 * 37.4 * 24.5 (mm³)
Weight	31g
Interface	UART TTL 3.3V 3,000,000 bps
Input power source	5V, 500mA
Operating Temperature	-10°C ~ 50°C
Pulse pattern (pulse duration, repetition rate,)	600 μs, 20 MHz 100 μs, 40 MHz
Maximum power or energy output	Max. 1.2 mW

*Laser Diode : Be Careful Do not inject the Laser directly into your eyes. The act of looking at the laser with an optical measuring instrument (magnifying glass, microscope, telescope, etc.) can cause poor vision.

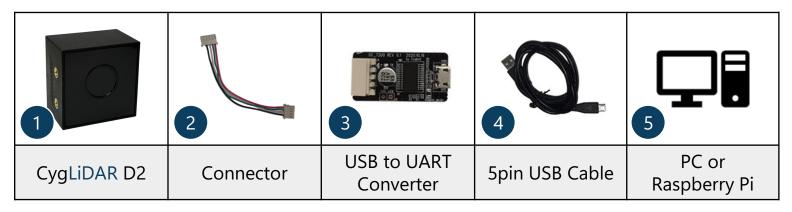

*DRM : Dynamic Range Mode

3. Component

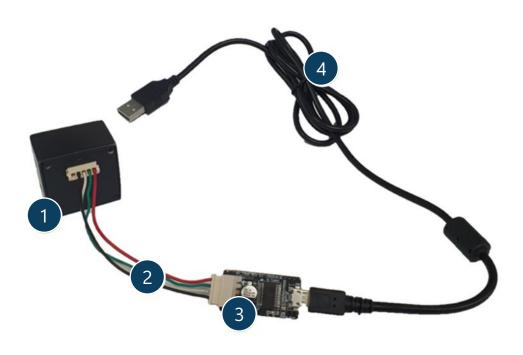

CygLiDAR D2	Connector	USB to UART Converter	5pin USB Cable

* Components other than CygLiDAR D2 are provided separately and may differ from the image above.

4. Hardware Design



FOV definition

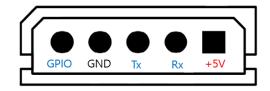


5. How to Use

- This is the tool you need to get your Lidar working.

- Connect 1, 2, 3, 4 in order as shown below.

- Finally, connect 4 and 5 (PC or Raspberry Pi).



UART

Data Bit	: 8	8 bit
Parity	: 1	none
Stop Bit	: '	1 bit
Baud Rate	: (3,000,000 bps

PINMAP

VCC	:	+5V
Rx	:	UART TTL Rx
Тх	:	UART TTL Tx
GND	:	GND
GPIO	:	Reserved

Packet structure

		Packet				Payload							
Header1	Header2	Header3	Payload Length LSB	Payload Length MSB	Payload Header	Payload Data 0	Payload Data 1		Payload Data n	Checksum			
1 byte	1 byte	1 byte	1 byte	1 byte	1 byte		n b	yte		1 byte			

Header : Three fixed values assigned to every valid dataset, consisting of 0x5A, 0x77 and 0xFF. Payload Length : Payload size in byte.

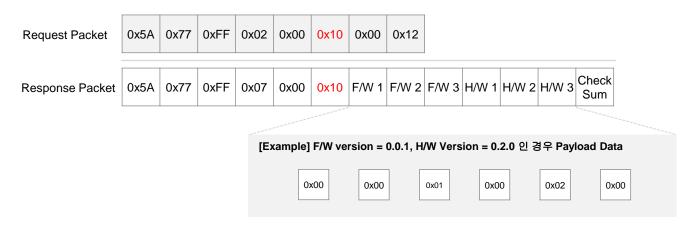
Payload Header : A unique value for a clarification of the device version.

Payload Data : A set of the significant bits of the pixel component data.

Checksum : The result of XOR of all values only except Headers from 1 to 3.

Checksum

Checksum is the last byte of a frame that is only used for an integrity check.


```
#define PAYLOAD_LENGTH_LSB_INDEX 3
uint8_t CalcChecksum(uint8_t *buff, int buffSize)
{
    uint8_t CheckSum = 0;
    for(int i = PAYLOAD_LENGTH_LSB_INDEX; i < buffSize - 1; i++)
    {
        CheckSum ^= buff[i];
    }
    return CheckSum;
}</pre>
```

Packet

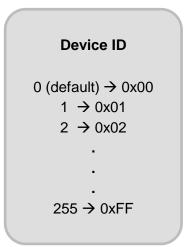
Request Overview

Request Name	Payload Header Value	Payload Length	Response Packet	LiDAR Operation	Supported Firmware Version
Get Device Info	0x10	2	Ο	Get the release versions of the latest update to F/W and H/W.	0.0.1
Get Device ID	0x21	2	Ο	Get the ID set for the current sensor.	0.3.5
Set Device ID	0x20	2	х	Sets the ID of the sensor.	0.3.5
Run 2D Mode	0x01	2	Ο	Start 2D Data measurement.	0.0.1
Run 3D Mode	0x08	2	Ο	Start 3D Data measurement.	0.0.1
Run Dual Mode	0x07	2	Ο	Start Dual Data measurement.	0.0.1
Switch Distance 3D	0x15	2	Х	Output Distance Data when measuring 3D Data.	
Switch Amplitude 3D	0x15	2	х	Output Distance Data and Amplitude Data when measuring 3D Data.	
Stop	0x02	2	х	Change status to Idle.	0.0.1
Set 3D Light pulse duration	0x0C	3	Х	Control 3D Light pulse duration.	0.0.1
Set Frequency Channel	0x0F	2	Х	Change frequency channel.	0.0.1
Set Baud Rate	0x12	2	х	Change serial baud rate.	0.2.4
Set New Filtering	0x13	3	Х	Change filters in 3D and Dual mode.	0.3.5
Set Edge Filtering	0xD0	2	х	Set the Edge filter.	0.3.5

Get Device Info (0x10)

Both versions of firmware and hardware are provided.

Get Device ID (0x21)


Request Packet	0x5A	0x77	0xFF	0x02	0x00	0x21	0x00	0x23
Response Packet	0x5A	0x77	0xFF	0x07	0x00	0x21	Device ID	Check Sum

Get the ID set for the current sensor.

Set Device ID (0x20)

Request Packet	0x5A	0x77	0xFF	0x02	0x00	0x20	Device ID	Check Sum
----------------	------	------	------	------	------	------	--------------	--------------

You can change the sensor's ID settings. Device IDs can be set from +0 to 255.

Run 2D Mode Request (0x01)

Request Packet	0x5A	0x77	0xFF	0x02	0x00	0x01	0x00	0x03								
Response Packet	0x5A	0x77	0xFF	0x43	0x01	0x01	LSB Time	MSB Time	LSB Temp	MSB Temp	LSB -60°	MSB -60°		LSB +60°	LSB +60°	Check Sum
	FÖV Reso Rang	olutior		Laser 120º 0.75º 200 ~ 16 bit	8,000	mm		16 16 16 16	5000 : 5001 : 5002 : 5003 :	ode lis Limit f Low A ADC C Satura Bad F	for val Amplit Overfl ation	tude	a			

Switch the state to 2D Mode. When the state is in 2D Mode, it measures and outputs 2D distance data. The data output sequence is from -60° to +60° with a 0.75° interval.

It outputs sensor's temperature (Temperature, \degree C) data and time (TimeStamp, µs) data after the target measurement before sending the 2D data.

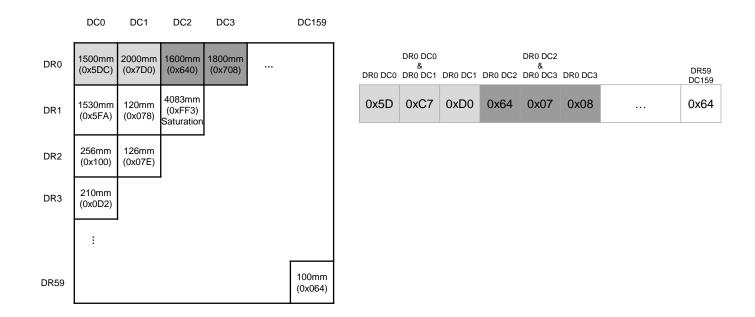
The measurement time can be obtained by subtracting the 2D timestamp from the current time, and the temperature is caculated as 'Temperature / 256 = Sensor Temperature' in $\text{Celsius}(^{\circ}\text{C})$

Run 3D Mode Request (0x08)

Request Packet	0x5A	0x77	0xFF	0x02	0x00	0x08	0x00	0x0A				
Response Packet	0x5A	0x77	0xFF	0x41	0x38	0x08	LSB Time	MSB Time	LSB Temp	MSB Temp	3D Distance Data	Check Sum
Response Packet	0x5A	0x77	0xFF	0x41	0x38	0x88	LSB Time	MSB Time	LSB Temp	MSB Temp	3D Distance & Amplitude Data	Check Sum

Light source: LEDResolution: 160 x 60Horizontal FOV: 120°Vertical FOV: 65°Range: 50 ~ 3,000mmData Type: 12 bit

Error code list 4080 : Limit for valid data 4081 : Low amplitude 4082 : ADC Overflow 4083 : Saturation

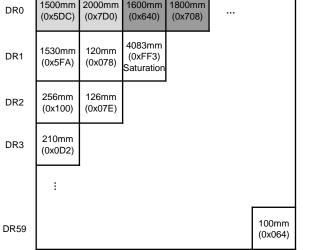

Switch the state to 3D Mode. When the state is in 3D Mode, it measures and outputs 3D Distance Data or Amplitude Data.

The data output sequence is in pixel coordinates (0, 0), (0, 1), (0, 2), ..., (159, 59).

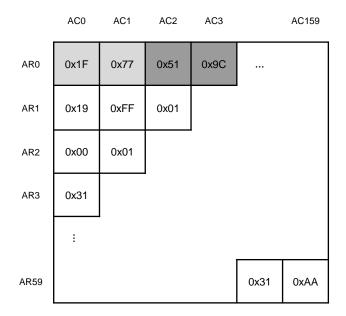
It outputs sensor's temperature (Temperature, \degree) data and time (TimeStamp, µs) data after the target measurement before sending the 2D data.

The measurement time can be obtained by subtracting the 2D timestamp from the current time, and the temperature is caculated as 'Temperature / 256 = Sensor Temperature' in Celsius($^{\circ}$ C)

3D Data format


Run Dual Mode Request (0x07)

DR0C0	DR0 DC0 & DR0 DC1	DR0 DC1	AR0 AC0	AR1 AC1	DR0C2	DR0 DC2 & DR0 DC3	DR0 DC3	AR2 AC2	AR3 AC3	DR59 DC159	AR58 AC158	AR59 AC159
0x5D	0xC7	0xD0	0x1F	0x77	0x64	0x07	0x08	0x51	0x9C	 0x64	0x31	0xAA



3D Distance Data

DC0 DC1 DC2 DC3 DC159

3D Amplitude Data

Run Dual Mode Request (0x07)

Request Packet	0x5A	0x77	0xFF	0x02	0x00	0x07	0x00	0x0A								
Response Packet	0x5A	0x77	0xFF	0x43	0x01	0x01	LSB Time	MSB Time	LSB Temp	MSB Temp	LSB -60°	MSB -60º		LSB +60°	LSB +60°	Check Sum
Response Packet	0x5A	0x77	0xFF	0x41	0x38	0x08	LSB Time	MSB Time	LSB Temp	MSB Temp	3D Distance Data				Check Sum	
Response Packet	0x5A	0x77	0xFF	0x41	0x38	0x88	LSB Time	MSB Time	LSB Temp	MSB Temp	3D Distance & Amplitude Data			Check Sum		

Switch the state to Dual Mode.

When the state is in Dual Mode, it sequentially measures and outputs 2D and 3D data. For 3D data, it outputs response data based on the selected Mode Type.

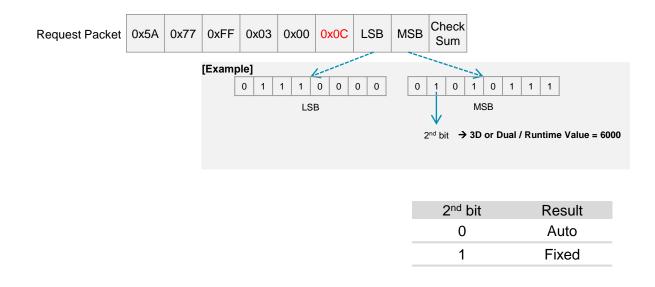
Switch Distance 3D / Amplitude 3D Mode Type

Request Packet	0x5A	0x77	0xFF	0x02	0x00	0x15	0x00	0x00	0x16	
----------------	------	------	------	------	------	------	------	------	------	--

When outputting 3D data, change the mode to output only Distance data type.

Request Packet	0x5A	0x77	0xFF	0x02	0x00	0x15	0x01	0x00	0x17	
----------------	------	------	------	------	------	------	------	------	------	--

When outputting 3D data, change the mode to output both Distance and Amplitude data. Amplitude data can be transformed according to user intent through vision algorithms.


Stop (0x02)

 Request Packet
 0x5A
 0x77
 0xFF
 0x02
 0x00
 0x02
 0x00
 0x00

Change the status to Idle.

When the status is in Idle, device does nothing.

Set 3D Pulse Duration Request (0x0C)

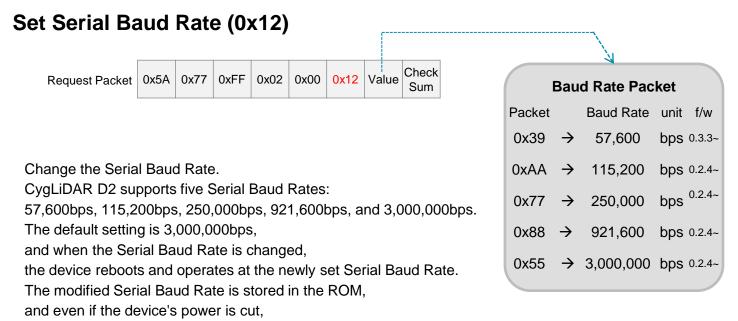
3D Data is utilized in both 3D Mode and Dual Mode.

You can adjust the Pulse Duration using the Set 3D Pulse Duration packet.

The adjustable time range is limited to 0 to 10,000 microseconds.

Pulse Duration has two modes:

Auto, where the LiDAR adjusts it automatically, and Fixed, where the user specifies a value.


If Pulse Duration is Fixed, the Pulse Duration Value is represented by the 14 bits following the 2nd bit.

Frequency Setting Request (0x0F)

Request Packet	0x5A	0x77	0xFF	0x02	0x00	0x0F	Freq Ch	Check Sum
								,

You can change the frequency of the Light Source. When measuring the same space simultaneously with two or more CygLiDAR D2 devices, interference between light sources can occur, potentially causing errors in the measurement data. Applying different frequencies to each device in this case can help reduce data errors caused by interference. CygLiDAR D2 utilizes 16 frequency channels.

Frequency Channel
Channel 0 → 0x00
Channel 1 → 0x01
Channel 2 \rightarrow 0x02
•
•
Channel 15 → 0x0F

It will automatically be set to the changed value.

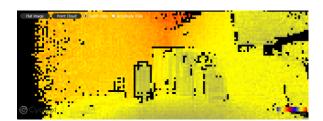
Set New Filtering (0x13)

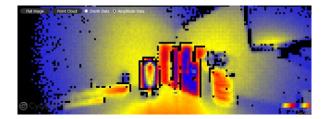
Change the filter in 3D and Dual Modes.

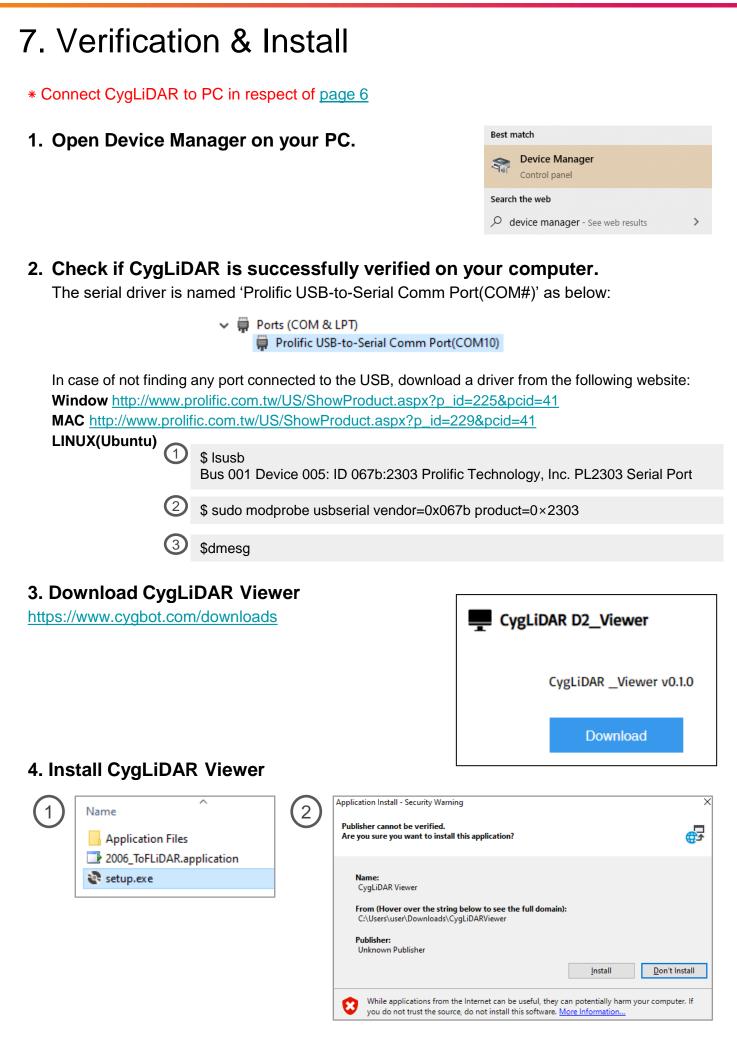
Filter Mode supports None, Median Filter, and Average Filter. The default setting is None, and when the Filter Mode is changed,

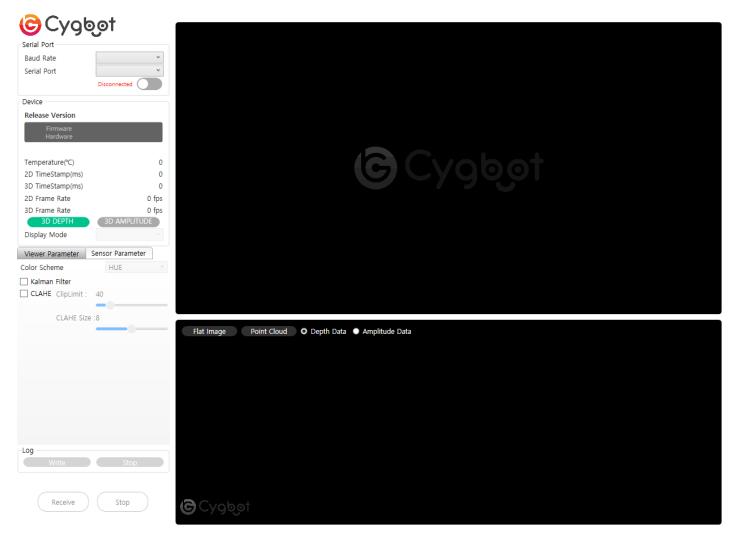
the selected filter is applied to the 3D Data.

E.	
New Filter Setting	Filter Mode
0	None
1	Median Filter
2	Average Filter

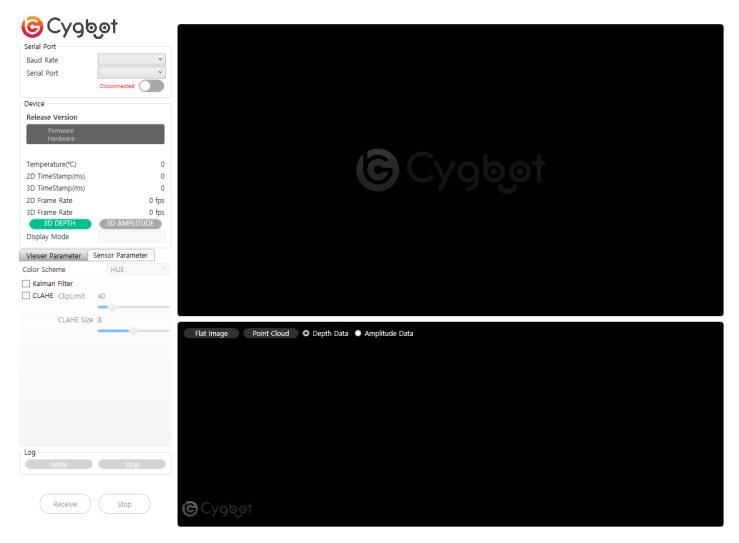

Set Edge Filtering (0xD0)


Request Packet	0x5A	0x77	0xFF	0x02	0x00	0xD0	LSB Value	MSB value	Check Sum
----------------	------	------	------	------	------	------	--------------	--------------	--------------


Set the Edge Filter.


- 3D Data Mode: Depth Data
- Edge filter Setting: 130

- 3D Data Mode: Amplitude Data
- Edge filter Setting: 130

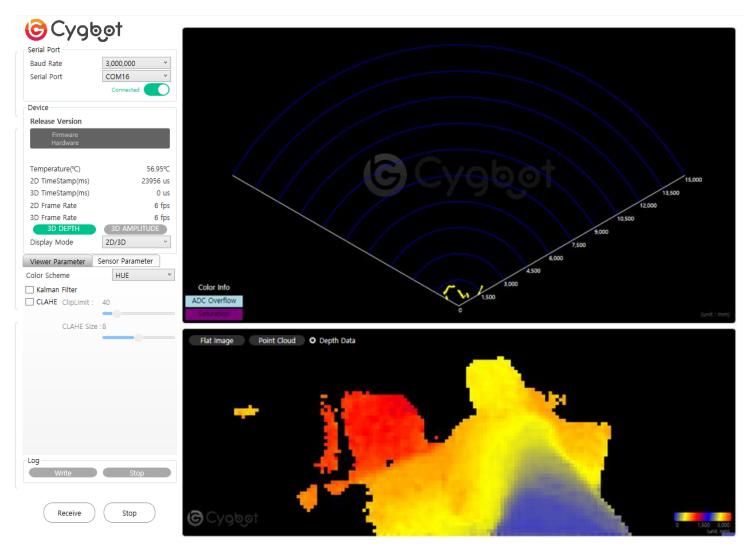


1) Serial Port

- Select a baud rate and a serial port to use.

- 2) Device
 - Check on the release version of the latest update to CygLiDAR firmware and hardware.
 - Set up a 3D data and a display mode.
- 3) Viewer Parameter
 - (1) Color Scheme
 - Set a color scheme of the following scales: Hue, RGB or Gray (Image samples on page 17).
 - (2) Kalman Filter: Set a Kalman Filter
 - (3) CLAHE: Set Clip Limit and CLAHE Size

4) Sensor Parameter


- (1) 3D Pulse Duration Control
 - Choose Auto and press Apply for a completion of Auto mode.

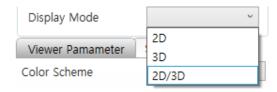
- Choose **Manual**, put a preferable value for the duration to send and press **Apply**. (The duration is +0 to the minimum and +10000 to the maximum available to apply.)

(2) Frequency Channel

- Assign a channel restricted from +0 to +15 for light sources.

- (3) Baud Rate SettingSelect a baud rate
- (4) Filter SettingSet a filter of the following mode: None, Median Filter or Average Filter.
- (5) Edge Filter SettingProvide a range of +10 to +100
- (6) Log
 - Provide logarithm for distance values

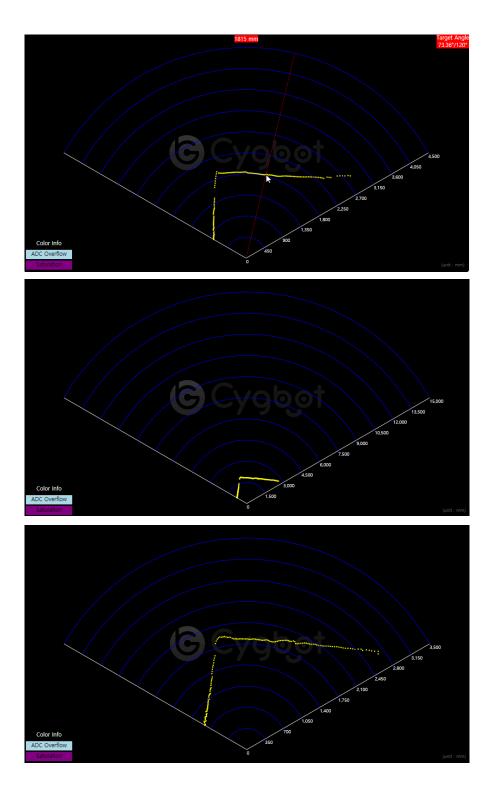
Example

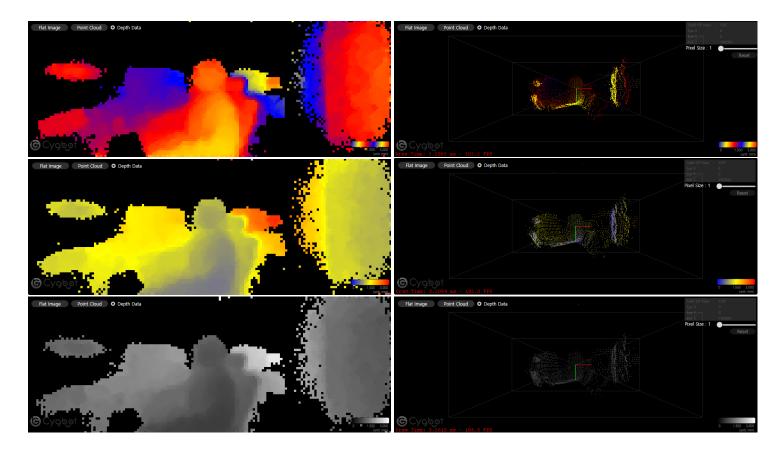

- 1) Baud Rate : 3,000,000 bps
- 2) Serial Port : Choose an available port for CygLiDAR.

After all sets up, press Connected button to turn on CygLiDAR.

 Display Mode : Select one of the following modes: Hue, RGB and Gray.

After all sets up, press Receive button to turn on CygLiDAR.

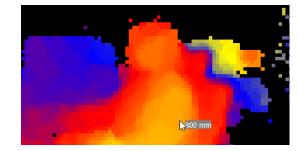

Serial Port	
Baud Rate	3,000,000 ~
Serial Port	COM16 Y
	Connected

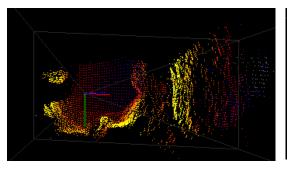

2D Data

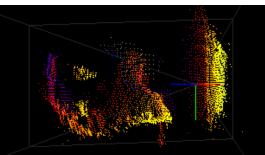
- Mouse cursor: each distance at the particular angle prints out on the preview.
- Mouse wheel: the canvas image zooms in and out as above.

3D Data

Each of the measured distances per pixel determines a color to be visualized on both 2D and 3D plans, and the color range is dependent on the selected Color Scheme.

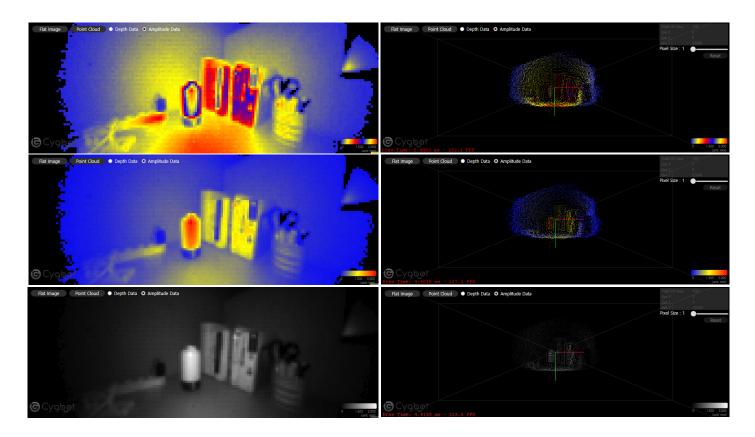



1) Flat Image

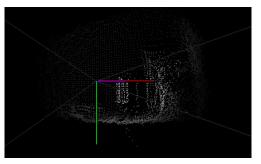

- Moving a mouse cursor updates a distance at the coordinate.

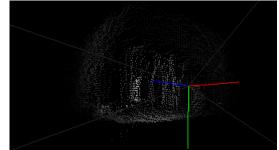
2) Point Cloud(Object)

- Mouse Left button and mouse cursor changes the view from the viewpoint.



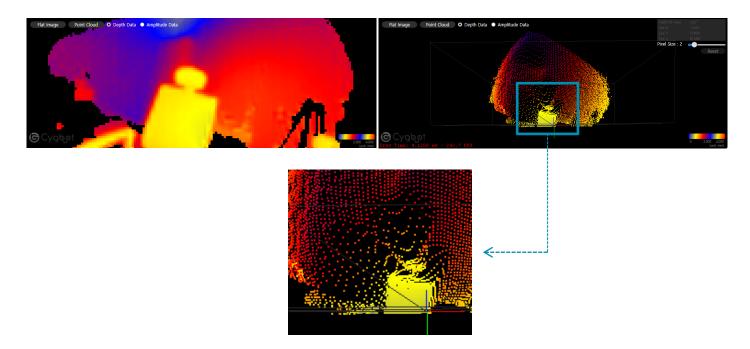
3D Amplitude


Each of the measured distances per pixel determines a color to be visualized on 3D plans, and the color range is dependent on the selected Color Scheme.


1) Flat Image

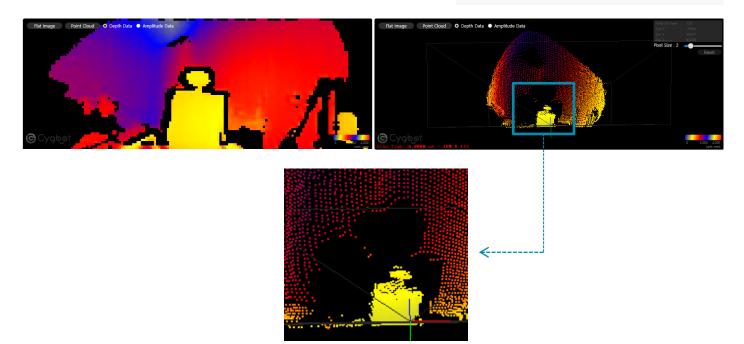
- Moving a mouse cursor updates a distance at the coordinate.
- 2) Point Cloud(Object)

- Mouse Left button and mouse cursor changes the view from the viewpoint.



Edge Filter

Indicates the boundary between the background and the object.


1) Edge Filter Off

2) Edge Filter OnEdge Filter Setting: 300

Edge Filter Setting

300 Apply

9. CygLiDAR ROS Driver

1) Copy ROS Package URL from the following Git repository page:

https://github.com/CygLiDAR-ROS/cyglidar_d2

င္ငံ main 👻 ငို 2 Branches 🚫 0 Tags		Q Go to file	<> Code -
cygbot Update CYG_KalmanFilter.h		D Clone	(?)
D2_ROS2	Update D2_Publishe	HTTPS GitHub CLI	url to clipboard
aunch	upload main branch	https://github.com/CygLiDAR-ROS/cyglidar_d	12.gi1 ل
rviz	Create cyglidar_con	Clone using the web URL.	\bigcirc
screenshots	Add files via upload	다. Open with GitHub Desktop	
scripts	upload main branch	📓 Download ZIP	
sdk	Update CYG_Kalmar	ıFilter.h	1 hour ago
CMakeLists.txt	upload main branch	source code D2	2 days ago
	Initial commit		2 days ago
🗅 README.md	Update README.mo	ł	5 hours ago
🗋 package.xml	upload main branch	source code D2	2 days ago

2) Clone the remote repository to your local computer as below:

\$ git clone https://github.com/CygLiDAR-ROS/cyglidar_d2.git

cygbot	<pre>WQQ:~/d2_ws/src\$ sudo git clone https://github.com/CygLiDAR-ROS/cyglidar_d2.git</pre>
Cloning	into 'cyglidar_d2'
remote:	Enumerating objects: 175, done.
remote:	Counting objects: 100% (175/175), done.
remote:	Compressing objects: 100% (157/157), done.
remote:	Total 175 (delta 71), reused 69 (delta 15), pack-reused 0
Receivir	ng objects: 100% (175/175), 5.02 MiB 5.89 MiB/s, done.
Resolvir	ng deltas: 100% (71/71), do <u>n</u> e.

10. Revision history

Document Revision History

31-Jan-24	0.1.0	Updated - CygLiDAR D2 Manual
01-Feb-24	0.1.1	Updated - Specification - Correcting a typo
27-Mar-24	0.2.0	Updated - Specification
05-Apr-24	0.3.1	Updated - Specification
14-May-25	0.4.0	Added - CygLiDAR Viewer Edge Filter Updated - Specification

IMPORTANT NOTICE - PLEASE READ CAREFULLY

Cygbot reserves the right to make changes, corrections, enhancements, modifications and improvements to Cygbot products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on Cygbot products before placing orders. Cygbot products are sold pursuant to Cygbot's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of Cygbot products and Cygbot assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by Cygbot herein. Resale of Cygbot products with provisions different from the information set forth herein shall void any warranty granted by Cygbot for such product. Cygbot and the Cygbot logo are trademarks of Cygbot . For additional information about Cygbot, please refer to <u>www.cygbot.com</u>. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 Cygbot – All rights reserved